式,所以只要考虑群的性质就可以了。

    而W又是小群,对于有质量粒子场想要做出SO群的不可约幺正表示,只要考虑右边的湮灭算符就行。

    这种计算对于赵忠尧这样的大佬来说并不算什么难题,因此很快赵忠尧便写下了对应的步骤:

    “先从动量算符入手,p^=??i??dd.....”

    “当湮灭算符作用在基态上时得到零,即a??ψa=0,因子??2??mω可以约掉......”

    “然后再做出无量纲化的共轭复振幅算符,它的时间演化就是乘上eiωt相位变化......”

    十多分钟后。

    赵忠尧轻轻放下笔,露出了一道若有所思的表情:

    “咦....谐振子居然有两个解析解?”

    随后他又看向了一旁同时在计算的胡宁和朱洪元二人,问道:

    “老胡,洪元同志,你们的结果呢?”

    胡宁朝他扬了扬手中的算纸:

    “我也是两个解。”

    朱洪元的答案同样简洁:

    “我也是。”

    见此情形,老郭不由眯了眯眼睛。

    他所计算的是SO和SO群的粒子数算符,虽然前置条件是单粒子态的算符只取决于延迟时刻的位置和速度,但这个假设其实和现实几乎无异。

    而根据计算结果显示。

    这个模型在数学上具备两个解析解,对应的是量子所述的玻色子规范场。

    其中一个解析解对应的自旋为1,另一个解析解对应的自旋则为0。

    而自旋为零在场论中对应的便是.....

    标量概念。

    这其实很好理解。

    量子场论中使用的的自然单位进行计算,真空中的光速c=约化普朗克常数??=1,时空坐标x===,偏微分算符??====

    狭义相对论的能量动量关系式是E??=P??+m??,让能量E用能量算符i??/??t替换,动量P用动量算符??i▽替换,就可以得到-????/??t??=-▽??+m??,即▽??-????/??t??-m??=0

    让它两边作用在波函数Ψ上得Ψ=0,这就是大名鼎鼎的克莱因-戈登场方程。

    算符????在洛伦兹变换下是四维标量,即??‘??=????静质量的平方m??是常数。

    要使克莱因-戈登场方程具有洛伦兹变换的协变,即将方程Ψ=0时空坐标进行洛伦兹变换后得到的Ψ‘=0形式不变,唯一要求就是洛伦兹时空坐标变换后的波函数Ψ‘=Ψ就达到目的了,这样的场叫标量场。

    如果让洛伦兹变换特殊一点,保持时间不变,而在空间中旋转,这样旋转后的波函数Ψ‘=expΨ。

    这就是说在时间t不变的情况下,波函数Ψ的空间坐标矢量X在角动量S方向旋转无穷小α角后变成矢量X‘。

    而波函数Ψ变成expΨ=Ψ‘,并且Ψ=Ψ‘。

    唯一的办法就是让自旋角动量S=0,这说明克莱因-戈登场方程描述的场粒子自旋为零。

    非常简单,也非常好理解。

    换而言之.....

    玻色子确实如同徐云所说的那样,可以分成标量玻色子和矢量玻色子。

    “......”

    过了片刻。

    赵忠尧胸口微微起伏了两下,整个人深吸一口气,平复好心绪后继续看向了王淦昌手中的第三方报告。

    如果考虑到矢量玻色子的-->>

本章未完,点击下一页继续阅读