确保速度峰值持续时间延长0.3-0.5秒。
那怎么做到“弧形前摆+直线复位“的复合轨迹,使髋关节合力方向与运动方向偏差角控制在5°以内。
能量传导效率从传统技术的68%提升至89%?
苏神是这么做的。
采取骨骼肌的“拉伸-收缩循环“(SSC)功率生成的生理基础。
前摆复位技术通过精准控制肌肉拉伸速度与幅度。
将SSC效率提升至理论极限。
1.预拉伸阶段:前摆动作中,臀大肌被快速拉伸至静息长度的1.2倍,肌梭传入神经冲动频率达300Hz,触发强烈的牵张反射。
2.能量储存阶段:肌腱在离心收缩阶段储存弹性势能,其能量密度可达4.8J/kg,相当于同等质量肌肉糖原的5倍。
3.快速释放阶段:复位动作使肌肉从离心状态快速切换至向心收缩,弹性势能在0.02秒内完成释放,功率输出峰值较单纯向心收缩提升2.3倍。
肌电研究证实,采用前摆复位技术时,臀大肌的肌电活动峰值出现在复位动作开始后0.015秒,较传统技术提前0.03秒,实现了能量释放与发力时机的精准匹配。
这样一来弧形扒地就可以和前摆结合。
弧形扒地和前摆结合?
是的。
苏神就是这么打算。
人体运动动力链遵循“近端主导-远端传导“原则,髋关节作为核心近端关节,其运动模式直接决定能量传递效率。
前摆复位技术通过三个机制实现动力链无缝衔接——
时序协同控制:前摆期核心肌群,提前0.02秒激活,稳定骨盆位置,使髋关节发力时的能量损耗降低至12%以下;
关节耦合优化:髋关节前摆与膝关节屈曲、踝关节背伸形成“三关节耦合“,关节间运动相位差控制在5°以内,能量传递效率提升至91%;
负荷分散缓冲:复位动作通过股四头肌离心收缩吸收地面反作用力,使髋关节承受的瞬时负荷降低30%,为持续发力创造条件。
也就是说之前拉尔夫曼提出这个学说之前也有人想把弧形扒地进行改进。
但是效果总是不好。
最大的问题就是耗能过度。
负荷太大。
这不是假话。
对比实验显示,缺乏前摆复位技术的运动员,在高速跑中出现明显的动力链断层。
也就是说,髋关节发力时膝关节仍处于缓冲阶段。
这样两两相交,能量损耗高达45%。
那这样你根本不可能相结合。
更不可能维持前侧。
而要是你做了前摆复位的系统训练,掌握了这一门技术体系,这种精准调控就可以使运动员能够在步态周期内实现“发力-复位-再发力“的快速切换。
功率输出的连续性显著优于之前的技术。
因为在此之前的髋关节功率输出,有三个主导技术无法突破的瓶颈。
这都会导致其无法实现髋关节持续高功率输出。
第一点,能量转化效率低下:单纯依赖肌肉主动收缩生成能量,弹性势能利用率仅为28%,功率输出峰值受限;
第二点,发力周期断层明显:后蹬结束后需经历0.05秒的缓冲期才能进入下一轮发力,造成功率输出中断;
第三点,动力链协同失衡:近端髋关节与远端关节运动相位差超过15°,能量在传递过程中损耗达50%以上。
运动生-->>