为L,记做:Limx-af(x)=L。”

    “在我看来,这个定义真正做到了完全“静态”,不再有任何运动的痕迹,也不再有任何说不清的地方。”

    “肥鱼,以你的智慧应该不难看出,它根本不关心你是如何逼近L的,飞过来,调过去它都不管。”

    “只要最后的差比ε小就行,我就承认l是a的极限。”

    “比如我们考虑最简单的  f(x)=  1/x,当x的取值(越来越大的时候,这个函数的值就会越来越小:f(1)=1,f(10)=0.1,f(100)=0.01,f(1000)=0.001......”

    “……看的出来,当x  的取值越来越大的时候,f(x)的值会越来越趋近于0。所以,函数  f(x)在无穷远处的极限值应该是0。”

    “接着再取一个任意小的ε,假设这里取ε=0.1,那么就要去找一个δ,看能不能找到一个范围让|f(x)-0lim0.1。”

    “显然只需要x→10就行了;取ε=0.01,就只需要x&→100就行了。”

    “任意给一个ε,我们显然都能找到一个数,当x大于这个数的时候满足|f(x)-0|limε,这样就OK了。”

    “怎么样,我的想法是不是很天才?”

    数分钟后。

    徐云面带叹服的从信上抬起了头。

    虽然有句话很老套。

    但他此时真的很想倒抽一口冷气,惊呼一声此子恐怖如斯......

    众所周知。

    微积分的雏形可以追溯到很久很久以前,古今中外皆有不少先贤们都提出过相关的概念。

    比如阿基米德、亚里士多德、刘徽等等。

    在这些前人的工作的基础之上。

    17世纪中后期,牛顿和莱布尼茨各自独立地创建了系统的微积分学。

    然而真正了解内情的人都知道。牛顿和莱布尼茨创造的微积分学并不完善。

    就像小牛说的那样,它有一个致命的缺陷:

    极限的概念太模糊了。

    因此有很多人试图修补这种缺陷,譬如麦克劳林试图从瞬时速度方面解释,泰勒则试图用差分法解释等等。

    但从后世角度来看,他们的路子显然都不对。

    因此在这一阶段,

    曾有很多人批判、质疑过微积分理论。

    最具代表性的就是贝克莱主教,也就是很早以前我们提出过的第一次数学危机。

    而想要化解危机该怎么办呢?

    答案很简单,只有将极限的概念真正严密化才行。

    后来经过达朗贝尔、波尔查诺、阿贝尔、柯西等人的努力,他们终于把定积分定义为了一个和式极限。

    最后经由魏尔斯特拉斯这位数学大家填上了最后一块砖石,才最终得到现在通用的逻辑严密的函数极限的ε-δ定义。

    要知道。

    魏尔斯特拉斯完成这个成就的时间点是在20世纪末,是在小牛他们创造微积分的两百年后!

    可在这封信中。

    小牛竟然凭着一己之力,将极限的概念无限的推导到了最终形态!

    诚然。

    那个时间点的小牛有杨辉三角和泰勒公式帮忙,和历史上真正的小牛完全是两个概念。

    但以上二者起到的只是一个辅助作用,顶多就是让你前几步路走的舒服一些而已。

    真正取到决定性的,还是小妞的个-->>

本章未完,点击下一页继续阅读